
Revisiting data augmentation for subspace clustering

Maryam Abdolali1,∗, Nicolas Gillis1

Department of Mathematics and Operational Research, Faculté Polytechnique, Université de Mons
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Abstract

Subspace clustering is the classical problem of clustering a collection of data samples that approximately lie
around several low-dimensional subspaces. The current state-of-the-art approaches for this problem are based on
the self-expressive model which represents the samples as linear combination of other samples. However, these
approaches require sufficiently well-spread samples for accurate representation which might not be necessarily
accessible in many applications. In this paper, we shed light on this commonly neglected issue and argue
that data distribution within each subspace plays a critical role in the success of self-expressive models. Our
proposed solution to tackle this issue is motivated by the central role of data augmentation in the generalization
power of deep neural networks. We propose two subspace clustering frameworks for both unsupervised and
semi-supervised settings that use augmented samples as an enlarged dictionary to improve the quality of the
self-expressive representation. We present an automatic augmentation strategy using a few labeled samples
for the semi-supervised problem relying on the fact that the data samples lie in the union of multiple linear
subspaces. Experimental results confirm the effectiveness of data augmentation, as it significantly improves the
performance of general self-expressive model.
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1. Introduction

With the advancements in data acquisition technology, high-dimensional data is widespread in many areas
of machine learning and signal processing. Data clustering plays a vital role in analyzing and understanding
high-dimensional data. Many techniques have been proposed for this challenging problem. Their common goal
is to aggregate the data into several groups based on a similarity/proximity measure. Among these approaches,5

subspace clustering (SC) is a prominent clustering approach that groups the data points according to their
proximity to underlying latent low-dimensional subspaces [1].

SC relies on the assumption that the data samples are distributed around multiple low-dimensional subspaces,
rather than being uniformly spread across the whole ambient space.

Definition 1 (Subspace Clustering). Let the matrix X ∈ Rd×n consist of n samples in Rd that are drawn10

from a union of p unknown linear subspaces, {Si}pi=1, with unknown dimensions, {dj}pj=1 where dj ≪ d for
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j = 1, . . . , p. Without any prior information about the orientation or the distribution of subspaces, the goal is
to recover the underlying low-dimensional structures by assigning each sample to a subspace/cluster.

In the past two decades, a wide variety of SC approaches have been proposed; see the reviews in [1, 2] and the
recent major advances in [3, 4, 5]. Among the many proposed techniques, the ones that are based on the concept15

of self-expressive representations are widely accepted to be the current state-of-the-art SC approaches [6, 7, 8].
Self-expressive representations rely on the fact that each sample can be expressed as a linear combination of
other samples from the same subspace, that is, X(:, j) =

∑
i ̸=j C(i, j)X(:, i), where X(:, j) indicates the j-th

column of the data matrix X, and C(i, j) is the (i, j)-th entry of the self-expressive coefficient matrix C ∈ Rn×n.
The nonzero entries in the square matrix C indicate a pairwise affinity between the corresponding samples.20

However, there are typically infinitely many solutions to a self-expressive model, because the number of
samples in a low-dimensional subspace is usually larger than its intrinsic dimension. Ideally, the coefficient
matrix should respect the subspace preserving property, which requires each sample to be represented by the
data points from the same subspace. In other words, the entries in the coefficient vector C(:, j) that correspond
to the samples from different subspaces should be equal to zero. Several regularization functions are proposed25

in the literature to enforce the subspace preserving property in self-expressive representations; including the
sparsity-inducing ℓ1 norm [6], the low-rank promoting nuclear norm [7], and the Forbenius norm [9]. Once
the self-expressive coefficient matrix is computed, the samples are clustered by applying the classic spectral
clustering algorithm [10] on the affinity matrix A = |C|+ |C⊤| ∈ Rn×n.

Self-expressive based SC algorithms have been extensively studied from a theoretical standpoint [6, 8, 11, 12,30

13], and have been used successfully in many machine learning applications [14, 15, 16]. However, the success
of self-expressiveness heavily depends on the existence of well-spread samples in each subspace [8]. To the best
of our knowledge, the majority of the literature has overlooked the role of the data distribution within each
subspace on the performance of the SC algorithms, and has treated the given data points as a fixed input. In
fact, the major focus of most SC approaches is to obtain a higher quality coefficient matrix, that is, strengthening35

the connections between the data points within each subspace while reducing the wrong connections between
the samples from different clusters. This was tackled using different regularizations [17, 18, 19], post-processing
approaches [20, 21, 22], or proposing more robust techniques [23, 24]. However, the key role of the distribution
of the samples across the subspaces is usually not discussed.

In this paper, we focus on the role of the data “quality” and its underlying impact on the “quality” of40

the coefficient matrix. Inspired by the remarkable influence of data augmentation on the performance and
generalization ability of neural networks [25, 26], we employ data augmentation to increase the diversity of the
data without collecting new samples.

This paper is the extension of our recent conference paper [27]. We extend this work by illustrating
that data augmentation can improve the performance of general subspace clustering approaches based on45

self-expressiveness. Our previous work is expanded in the following aspects:

1. In [27], we provided encouraging results to highlight the significant impact of data augmentation on the
performance of unsupervised sparsity-regularized SC. In this paper, we show that data augmentation
has notable impact on the general self-expressive models and provide a simple approach to combine the
information from data augmentation with typical self-expressive based SC algorithms, and with least50

amount of modification in the original model.

2. We provide extensive numerical analysis of data augmentation in self-expressive based models.

3. We provide detailed discussion on the impact of data augmentation strategies on the performance, and
suggest an efficient augmentation strategy when the linearity assumption is valid.
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4. To the best of our knowledge, this is the first work that highlights how data augmentation can significantly55

benefit self-expressive representations, for both linear and nonlinear data, and for both the supervised and
semi-supervised settings.

Contribution and outline of the paper. In this paper, we propose a general framework to incorporate data aug-
mentation within SC. First, in Section 2, we review the self-expressive based model and the existing algorithms
which are the foundations of the proposed models. Then, the main contributions are presented in the next60

sections:

1. In Section 3, we provide a geometric interpretation to illustrate the impact of augmented samples on the
performance of SC, with the focus on sparsity regularized SC.

2. In Section 4, we consider unsupervised and semi-supervised SC, and propose a framework for integrating
data augmentation within the general optimization model of SC. We first revisit our prior work [27] and65

generalize it for three representative self-expressive unsupervised SC algorithms. We then adapt it to the
semi-supervised setting with a few labeled samples available. Using the labeled samples, we present an
auto-augmentation strategy. We also provide a simple practical strategy to improve the scalability of the
proposed approaches for large real-world data sets.

3. In Section 5, we illustrate the different properties of the proposed approaches on several numerical experi-70

ments, and show their effectiveness compared to the state of the art using several synthetic and real-world
data sets.

2. Related Works

As illustrated in Figure 1, self-expressive based SC approaches consist of two main steps:

1. Represent the samples using other samples and construct a coefficient matrix, C, which encodes the75

pairwise similarity between samples.

2. Cluster the samples via spectral clustering on the affinity matrix, A = |C|+ |C|⊤.

Self-expressive based
representation Spectral Clustering

Input data

Figure 1: The overall procedure of self-expressive based SC approaches. In the first step, a pair-wise affinity matrix using self-
expressive representations is constructed. In the second step, the clusters are obtained by applying spectral clustering on the affinity
matrix.
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Correct partitioning of samples by spectral clustering depends on the quality of the coefficient matrix com-
puted in the first step. The self-expressive coefficient matrix is generally obtained by solving the following
optimization problem:

min
C∈Rn×n

R(C) + λ L(X −XC) such that C(i, i) = 0 for i = 1, . . . , n, (1)

where R(C) is a regularizer, λ > 0 is a regularization parameter, and L is the loss function which measures
the self-expressive representation error and is typically the squared Frobenius norm. Three regularizers are
the most widely used: (1) the component-wise ℓ1 norm, ∥C∥ℓ1 =

∑
i,j |C(i, j)|, in sparse subspace clustering80

(SSC) [6], (2) the nuclear norm, ∥C∥∗ =
∑n

i=1 σC(i) where σC(j) is the jth singular value of C, in low-rank
representation (LRR) [7]; and (3) the Frobenius norm, ∥C∥2F , in least square regression (LSR) [9]. Out of the
existing regularizers, the ℓ1 norm has the strongest theoretical guarantees [8, 13]. In fact, the ℓ1 norm based SC is
subspace preserving when the underlying subspaces are independent, disjoint and even intersecting/overlapping.
Whereas, the subspace preserving guarantees for SC algorithms based on the nuclear and Frobenius norms are85

limited to independent subspaces [7, 9].

Semi-supervised SC. Several approaches in the literature have extended unsupervised SC to the semi-supervised
setting where a few labeled samples are available. Most approaches use the labels to construct a graph with
explicit label smoothness constraint. In particular, graph-based label propagation (LP) approaches, such as the
Locally and Globally Consistency based method [28], are combined with self-expressive based graph construction90

in SC. The goal is to yield a higher quality graph that respects the label consistency between the adjacent
nodes [29, 30, 31]. These approaches mainly differ in the regularizers for the coefficient matrix, the label
propagation approach, and the optimization scheme; see [32] for a comprehensive review.

Improving the quality of the coefficient matrix in challenging scenarios such as dealing with data contami-
nated by noise, outliers or missing entries [33, 23, 24], coming from multiple views/sources [34, 35, 36], and with95

nonlinear structures [37, 38] (see [2] for a comprehensive review) have formed the main body of the previous
studies on SC. However, almost all of the past studies have considered the data matrix as a fixed input and
attempted to improve the performance (under various settings and assumptions) without altering the input
data.

In this paper, we focus on the effect of data distribution on the quality of the coefficient matrix. Motivated100

by the significant role of data augmentation in the performance of neural networks, we will propose an SC
paradigm relying on data augmentation leading to representations that better respect the subspace preserving
property.

SC and data augmentation. To the best of our knowledge, there are only a handful number of SC algorithms
that incorporate augmented samples for learning the representations. Moreover, these approaches tackle non-105

linear SC. The common backbone of these approaches is integrating self-expressive representation as a linear
layer within a conventional autoencoder network [39]. These approaches typically use data augmentation to
obtain consistent representations for different augmentation strategies applied on the data. In other words, the
augmented samples are used as different views from the given input data and the goal is to achieve consistent
representations among these views. For example, a subspace consistency loss is proposed in [40] to enforce con-110

sistent subspaces for original samples and their corresponding transformed samples. Later in [41], the concept of
contrast learning was brought in neural network based SC and data augmentation was used to generate positive
pairs that are assumed to share the same subspace/cluster. In this paper, we will combine the original and
augmented samples as a unified enlarged dictionary, and argue that this provides more information to ensure
subspace preserving representations.115
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3. Geometric perspective on the impact of data augmentation in sparse subspace clustering

In this section, we focus on SSC, and provide geometric intuitions on how data augmentation affects the
performance of SC. Although the focus of the study in this section is on SSC, we will numerically show in
Section 5 that data augmentation is beneficial for other self-expressive based SC approaches, namely LSR and
LRR.120

3.1. The effect of data augmentation on subspace preserving guarantees

Let us first review the conditions under which SSC obtains subspace preserving coefficients, for which the
arrangement of the subspaces plays a key role 2. For the simplest subspace arrangement, that is, independent
subspaces, SSC is always subspaces preserving [6, 8]. For more complex subspace arrangements, two notions
play a crucial role: subspace incoherence and inradius. Subspace incoherence is a measure of the separation125

amongst the subspaces. As the angle between subspaces decreases, the incoherence increases, and, subsequently,
the SC problem becomes more challenging. Given a data point, its corresponding subspace incoherence, denoted
µ(X(:, j)) ∈ [0, 1], provides a “distance” between X(:, j) and the subspaces it does not belong to. In particular,
µ(X(:, j)) = 1 if the subspaces are orthogonal to X(:, j) while µ(X(:, j)) = 0 if X(:, j) belongs to one of these
subspaces. For completeness, a rigorous definition of subspace incoherence, based on the dual of the SSC130

optimization problem, is provided in the supplementary material A.1. For a given convex hull P, its inradius,
denoted r(P), is defined as the largest Euclidean ball that is inscribed in P. After the normalization of the
data points in a subspace, the corresponding inradius captures how well the samples are spread in a subspace,
in terms of spanning the different dimensions. Given these two concepts, we have the following theorem that
guarantees SSC to be subspace preserving.135

Theorem 1 (Subspace preserving condition for SSC [8]). Suppose all the samples are normalized to have unit
ℓ2 norm, that is, ∥X(:, i)∥2 = 1 for all i. The optimal solution to

C(:, j) = argminc∈Rn ∥c∥1 such that X(:, j) = Xc and c(j) = 0, (2)

is subspace preserving for the sample X(:, j) ∈ Sℓ if the following condition holds:

µ(X(:, j)) < r(Pℓ
−j), (3)

where Pℓ
−j is the convex hull of the samples in the ℓ-th subspace without X(:, j).

Based on this inequality, as the incoherence increases, the inradius should increase as well to obtain a
subspace preserving solution. Hence, as the latent subspaces get closer to each other, the value of inradius
plays a significant role in the success of SSC. However, note that the subspace incoherence relies on the intrinsic
structure of the data and changing this quantity with no prior information on the latent structure of samples in140

the high-dimensional space is nontrivial (if not impossible). But as we will argue in this paper, augmenting the
samples can increase the inradius, and hence benefits SSC in the challenging case of clustering nearby subspaces.

3.2. The effect of data augmentation on the coefficient matrix

In this section, we present the geometric interpretation on how changing the inradius using data augmentation
can enhance SSC. Let us consider the geometric interpretation of SSC, which was first reported in the compressed145

sensing literature [42, 43].

2For a summarization of subspace preserving guarantees for different SC algorithms see Table 1 in [2].
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Let X±
−j = [±X(:, 1), . . . ,±X(:, j − 1),±X(:, j + 1), . . . ,±X(:, n)] ∈ Rd×2n−2 be the matrix which is ob-

tained by combining the negative samples with the entire original samples in X, except the j-th sample, X(:, j).
Using X±

−j as the dictionary, (2) can be reformulated as:

min
a∈R2n−2

e⊤a such that X(:, j) = X±
−ja, a ≥ 0, (4)

where a ≥ 0 indicates the element-wise nonnegativity constraint, and e is the vector of all ones of appropriate
dimension. The first constraint in (4) can be written as

X(:, j) = X±
−ja = X±

−j

a

e⊤a︸︷︷︸
b

e⊤a,

where b = a
e⊤a

∈ R2n−2. The vector X±
−jb belongs to the convex hull of the set of points in X±

−j , that is,

conv(X±
−j), and by setting β = 1

e⊤a
, we write the problem in (4) as:

max
β

β such that βX(:, j) ∈ conv(X±
−j). (5)

This means that (4) looks for the vectors with the maximum length on the ray generated by X(:, j) and that
belongs to conv(X±). The optimal solution will belong to a face of conv(X±), and the vertices of that face
will correspond to the samples with nonzero entries in the sparse coefficient vector C(:, j). The distribution of
samples within each subspace influences the convex hull of the samples, and hence the inradius of the subspace.150

Changing the distribution of data points within each subspace affects the nonzero entries of the coefficient
matrix, and, consequently, might affect the correctness of the clustering.

Let us show this using a simple example in three dimensions. Suppose we are given samples from three
disjoint subspaces, {Si}3i=1, in three dimensions (d = 3); one plane and two lines; see Figure 2 (a). The samples
are shown with full circles. Let x ∈ S1 (black circle) be a sample that lies on the intersection of S1 and S2

⊕
S3,155

where
⊕

indicates the sum of two subspaces. The ray generated by x intersects the boundary of the convex
hull of the other samples, conv(X±

−x), on a face with vertices belonging to the subspaces S2 and S3. Hence,
the nonzero entries in the coefficient vector corresponding to x correspond to samples from wrong subspaces.
Now, suppose that using an augmentation strategy a few new samples (shown by cross signs) are generated and
added to the existing samples; see Figure 2 (b). Now, the ray generated by x intersects the convex hull on the160

face with vertices belonging to the same subspace, S1. This is, in fact, due to the increase in the value of the
inradius of the subspace S1.

4. Subspace clustering with data augmentation

In the next section, we explain how we integrate the the augmented samples within the general optimization
model of SC.165

Data augmentations are widely used in the neural network literature as an explicit regularization technique to
improve the generalization capability and reduce overfitting. Augmentation refers to synthetic data generation
strategies that are applied on a given existing data set in order to increase the number of available samples
and the quality/diversity of the data. The major common assumption for augmentation strategies across
different data domains is that they should be label preserving. An augmentation transformation is said to be170

label preserving if it does not change the cluster (label) of the generated samples. Examples of classic data
augmentation strategies for images include primitive image processing functions such as flipping, rotation, scaling
and color space shifting, see surveys in [44, 25]. In fact, data augmentation is not limited to image data and
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x

S2 S3

S1

(a) without data augmentation

x

S2 S3

S1

(b) with data augmentation

Figure 2: The effect of augmentation on the correctess of SSC. With no data augmentation, see (a), the sample x ∈ S1 (black dot)
is represented by the samples from the wrong subspaces, S2 and S3. Adding augmented samples (crosses) to the given samples,
see (b), allows x to be represented by the augmented samples from the same subspace.

there exist several augmentation strategies in other data domains: (a) in textual data using noise induction on
character and word level, synonym replacement and round-trip translation [45]; (b) in audio samples using time175

warping, frequency masking and time masking [46]; and (c) in hyperspectral data using random occlusion [47].
Inspired by the significant role of augmentation in training neural networks with limited samples for various

domains, we revisit this concept for the problem of SC and use data augmentation to avoid degenerate subspaces
and generate well-spread samples within each subspace. In this section, we first focus on the more direct approach
of applying classic predefined augmentation strategies in the unsupervised scenario. In section 4.1, we propose180

a framework, dubbed augmented subspace clustering (A-SC) that benefits from a synthetically enlarged data
set. We extend this framework in Section 4.2 in the semi-supervised scenario based on label propagation and
argue that the increase in the quality of the coefficient matrix due to the augmented data can benefit the label
propagation. Moreover, under the model of union of multiple subspaces, we propose a strategy to automatically
generate augmented samples. Hence, we provide a semi-supervised methodology that uses few labeled samples185

to both learn the augmented samples and refine the connectivity graph in an iterative algorithm.

4.1. Unsupervised subspace clustering with data augmentation

In this section, we focus on unsupervised data augmentation in order to increase the diversity of given
samples by forming an enlarged overcomplete dictionary. This approach, named A-SC, is the extension of our
prior work recently presented in [27]. We generalize this work for the three most common regularizations for190

the coefficient matrix C and introduce a general framework for combining self-expressive based SC approaches
with synthetic augmented data.

A-SC relies on unsupervised instance-based data augmentation. For instance-based strategies, the trans-
formation function is applied on each sample individually and independently. Examples of such strategies are
classic image augmentation techniques such as flipping, scaling and rotations. Suppose we are given m different
augmentation functions that are assumed to be label preserving. Let X̂ = [X̂1, . . . , X̂m] ∈ Rd×nm be the m sets
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of augmented samples, where X̂j ∈ Rd×n is the synthetic samples generated by applying the j-th transformation

function on the data matrix X, for j = 1, . . . ,m. The matrix X̂ contains extra information that is implicitly
available in the original data X. The final overcomplete dictionary, X̃, is formed by concatenating original
samples with the augmented ones as follows: X̃ = [X | X̂] ∈ Rd×(nm+n). Using the newly available information
in X̃,we propose the following optimization model:

C̃ = argmin
C∈Rn(m+1)×n

R(C) +
λ

2
∥X − X̃C∥2F such that C(j,Ω(j)) = 0 for j = 1, . . . , n, (6)

where Ω(j)={j + (k − 1)n}m+1
k=1 contains the indices of the augmented samples corresponding to the sample

X(:, j). The constraint C(j,Ω(j)) = 0 makes sure that each sample is not represented using itself or its
corresponding augmented samples. In fact, this is crucial to avoid the possible oversegmentation problem, that195

is, segmenting a cluster (subspace) into several excessive mini-clusters. Representing a given sample X(:, j) only
by its corresponding augmented samples reveals nothing about the relationship and connectivity between the
samples in the original data matrix. We consider three representative regularization functions for R(C), namely,
∥C∥1, ∥C∥∗ and ∥C∥2F which eventually leads to three algorithms, Augmented SSC (A-SSC), Augmented LRR
(A-LRR) and Augmented LSR (A-LSR), respectively.200

For obtaining the clusters by spectral clustering, we take advantage of the specific block-wise structure in the
rectangular coefficient matrix C̃. In particular, the matrix C̃ is composed of vertical concatenation of several
square matrices: C̃ = [C̃1 ; . . . ; C̃m+1] where C̃1 ∈ Rn×n corresponds to the representation coefficients using

original samples in X, and, similarly, {C̃j}(m+1)
j=2 ∈ Rn×n indicates the coefficient representations using the

augmented samples in {X̃j}mj=1. We therefore summarize the matrix C̃ into a square matrix Cf ∈ Rn×n as205

follows: Cf =
∑m+1

i=1 |C̃i|. Lastly, the final clusters are obtained by applying spectral clustering on the affinity
matrix Af = |Cf | + |C⊤

f |.
However, increasing the number of augmented samples is a double edged sword. On one hand, it can

potentially improve the performance, due to the increase in the inradius of the subspaces, see (3). On the other
hand, it also increases the computational cost. Solving (6) using ADMM [48] (which is standard and efficient210

strategy which we adopt in this paper) costs O(ñ3) operations which might limit the applicability of A-SC for
real-world data sets, and limits the number of augmented samples.

Fortunately, the proposed formulation in (6) allows us to use several already available scalable SC algo-
rithms [49, 50, 51]. For simplicity, in this paper we use a simple strategy proposed in [52]: instead of representing
every sample X(:, j) as a linear combination of the entire large dictionary, X̃, it uses its k-nearest neighbors215

(kNN). In other words, the self-expressive dictionary is limited to the k samples that are closest to the sample
X(:, j) (discarding its augmented samples). The corresponding class of models is dubbed augmented kNN SC
(Ak-SC), while we denote Ak-SSC, Ak-LRR and Ak-LSR, the SC algorithms for the corresponding regularizers.

4.2. Semi-supervised subspace clustering with data augmentation

In many applications, there are often a few labeled samples available among the many unlabeled ones.220

Extracting the latent low-dimensional subspaces by taking advantage of the existing labeled samples is the goal
of semi-supervised SC algorithms. The supervisory information from the few labeled samples can be beneficial
in learning a higher quality coefficient matrix. In this section, we first introduce the proposed framework for
combining the augmented samples within the semi-supervised SC problem, and then we suggest a possible
auto-augmentation strategy according to the model of union of multiple subspaces. We eventually discuss the225

shortcoming of this strategy for extracting nonlinear structures.
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4.2.1. Combining data augmentation and label propagation in semi-supervised SC

Our proposed approach will use the the information from the labeled and augmented samples in order to
(i) construct a more accurate coefficient matrix C, and (ii) propagate the available label information across the
graph corresponding to the coefficient matrix C.230

Let the data X ∈ Rd×n be divided into labeled samples Xl ∈ Rd×nl and unlabeled samples Xu ∈ Rd×nu ,
such that nl + nu = n. For simplicity, we assume that there are equal number of labeled samples for each
category, namely, nl

p . Let Y = {0, 1}n×p be the label indicator matrix which contains the available labels of the
samples and is defined as follows:

Y (i, j) =

{
1, if X(:, i) is a labeled sample from the jth subspace,
0, otherwise.

The goal of the proposed semi-supervised approach, referred to as Augmented semi-supervised SC (AS-SC)
is to achieve a label-consistent coefficient matrix using the augmented samples. A coefficient matrix is label
consistent if for any two samples with different labels, the corresponding entry in the coefficient matrix is zero.
Let F ∈ [0, 1]ñ×p be the estimated membership of the ñ samples to the p clusters, where the entries in each
each row sum to one. Each row of F encodes the estimated probability of the corresponding sample belonging
to each of the p clusters, that is, Fe = e and F ≥ 0; see Appendix B. The matrix Ỹ ∈ {0, 1}ñ×p is the extended
label matrix which is constructed by zero-padding the original label matrix: Ỹ = [Y ; 0(ñ−n)×p] where 0(ñ−n)×p

is zero matrix of dimension (ñ − n) × p. Moreover, we keep the relationship between augmented samples and
their corresponding original samples in the binary matrix S ∈ {0, 1}ñ×n, defined as:

S(i, j) =

{
1, if X̃(:, i) is an augmented sample generated from the sample X(:, j),
0, otherwise.

(7)

Using the generated augmented samples in combination with label information, AS-SC optimizes the following
model:

(C̃, F ) = argminC,F R(C) +
λ

2
∥X − X̃C∥2F︸ ︷︷ ︸
loss function

+λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |C(i, j)|︸ ︷︷ ︸
label consistency

+ γ1 tr
(
(F − Ỹ )⊤U(F − Ỹ )

)
︸ ︷︷ ︸

preserving initial labels

+ γ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 S(i, j)︸ ︷︷ ︸
label preserving augmentation

,

such that C(Φj , j) = 0 for j = 1, . . . , n, and Fe = e, F ≥ 0, (8)

where Φj is a set containing the cannot-links information, that is, the edges which should not exist for the
sample X(:, j). In particular, Φj contains: (i) the indices of labeled samples with different labels from the
sample X(:, j) to avoid connection between samples from different clusters, (ii) the index j and the indices of
the corresponding augmented samples from the sample X(:, j) to avoid trivial connections. The diagonal binary
matrix U ∈ {0, 1}ñ×ñ is defined as:

U(i, i) =

{
1, if X̃(:, i) is labeled,
0, otherwise.

(9)

There are three additional vital penalty terms in (8) compared to the unsupervised problem in (6):
9



• The term
∑ñ

i=1

∑n
j=1 ∥F (i, :) − F (j, :)∥22 |C(i, j)| plays the role of enforcing the consistency between the

coefficient matrix C and the estimated label matrix F . If two samples, say X̃(:, i) and X̃(:, j), have different
estimated labels, then the corresponding entry in the coefficient matrix, C(i, j), is encouraged to have a
small value. This encourages the removal of connections/links that do not follow the label information235

within the matrix F . Similarly, the matrix F is enforced to follow the implicit graph structure in the
coefficient matrix C. In particular, large values in the entries of the matrix C encourage the labels of the
corresponding samples to be close to each other in the matrix F . In other words, this term enforces label
smoothness over the graph structure induced by C.

• The term tr
(
(F − Ỹ )⊤U(F − Ỹ )

)
ensures that the estimated labels in F are equal to the initial given240

labels in the matrix Ỹ . This term, in combination with the term above, is known as locally and globally
consistent based label propagation [28] in the semi-supervised learning literature (see also Section 2).

• The term
∑ñ

i=1

∑n
j=1 ∥F (i, :)−F (j, :)∥22 S(i, j) ensures that the augmented samples share the same label

with the original samples from which they were generated.

The regularization parameters γ1 and γ2 > 0 are set to a high value, since we want to preserve the given245

label information. We have used γ1 = γ2 = 1000 for all the experiments in this paper. Note that under
the assumption that the available labels are correct, the penalty terms corresponding to γ1 and γ2, namely∑ñ

i=1

∑n
j=1 ∥F (i, :) − F (j, :)∥22 S(i, j) and tr

(
(F − Ỹ )⊤U(F − Ỹ )

)
, should be equal to zero. In other words,

in the absence of noisy labels, the estimated labels should be completely consistent with the available labels.
Hence, large values for γ1 and γ2 are encouraged. For any larger value than γ1 = γ2 > 10, we did not notice250

any sensitivity to these parameters.

Remark 1 (Avoiding spectral clustering). The square coefficient matrix Cf ∈ Rn×n can be calculated from the

matrix C̃ using Cf (i, j) =
∑

k∈Ω(i) |C̃(k, j)|, for i, j = 1, . . . , n where Ω(i) contains the indices of the augmented

samples from the sample X(:, i), as in Section 4.1. One can then apply spectral clustering on the affinity
matrix corresponding to Cf to obtain the clustering labels. However, for semi-supervised SC, we can avoid the255

computationally expensive spectral clustering step by using the estimated label matrix F for identifying the final
labels. In other words, the label of each sample X(:, j) can be obtained using argmaxF (j, :) for j = 1, . . . , n.
We have used this approach in all numerical experiments of the paper.

Remark 2 (Paths in the induced graph). Ideally, there should be p separated connected components in the
graph induced by Cf , and labeled samples of each cluster should be separated from other samples with different260

labels. This means that there should be no connecting “path” in the graph between the labeled samples of different
clusters. It is possible to penalize such paths using “graph powers” [53], but this is rather computationally heavy.
However, we can interpret the Locally and Globally consistent-based label propagation as an efficient enforcement
of one-hop level consistency between the (estimated) labels of the nodes in the graph.

Solving the AS-SC model (8). The optimization problem in (8) is nonconvex. We use a two-block coordinate265

decent approach to solve it: We iteratively optimize over one of the two matrices, C or F , while keeping the
other fixed. We use ADMM to estimate C for F fixed, while the optimal F is the solution of a linear system of
equations for C fixed. This iterative algorithm is terminated when the matrix F does not change considerably
between two consecutive iterations, or when the number of iterations exceeds a predefined value (we set it as
10 in this paper as this iterative process converges rather quickly; see Section 5.2.1 for numerical experiments).270

We have observed in our numerical experiments that updating F and C simultaneously in a unified ADMM
algorithm, as in [54], is very sensitive to the parameter of λ2 which controls the label propagation speed. We
use zero matrices to initialize both matrices of F and C. Since our alternating scheme first optimizes C, this
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means that the value of C after the first iteration is the coefficient matrix that would be obtained without using
the label information. The details can be found in Appendix A.275

To reduce the computational burden of using augmented samples, we use the same strategy as unsupervised
A-SC, namely using the k nearest neighbors of each sample. This leads to the a class of algorithms dubbed as
Augmented kNN Semi-supervised Subspace Clustering (AkS-SC). Depending on the regularizer used for R(C),
we have three algorithms: AkS-SSC, AkS-LRR and AkS-LSR. The detailed optimization procedures for these
three algorithms are provided in the supplementary material A.2.280

4.2.2. Generating augmented samples within the union of multiple subspaces

There is a large body of work devoted to designing better and richer augmentation strategies and a wide
variety of strategies are available for data augmentation in various domains [55, 25, 56]. As we discussed earlier,
augmentation strategies should not change the category (subspace) of the samples but with not enough prior
knowledge, a critical question remains:285

Which strategies should be selected for data augmentation in different domains and applications, and how
the parameters of these strategies should be set to generate label-preserving samples?

Hence, a big obstacle in using data augmentation for SC is generating the augmented samples that are label
preserving. In this section, we propose an auto-augmentation approach under the union of multiple subspaces
assumption which we refer to as “linear interpolation”.290

As the augmentation should not alter the category of samples, the augmented samples should belong to one
of the subspaces. Hence, for each cluster, we generate the new samples by linear combinations of given labeled
samples from the same cluster. Let X̄ = [X̆1, . . . , X̆p] ∈ Rd×(pna) be the generated auto-augmented samples,
where na is the number of augmented samples per cluster. In particular, for the subspace Sj , na augmented
samples are generated as follows: for k = 1, . . . , na,

X̆j(:, k) = {Xa | a(i) = 0 when Y (i, j) ̸= 1},

where a ∈ Rn is a vector with randomly generated entries (see below for more detail). As the augmented
samples are generated using the labeled samples from the same cluster, they are guaranteed to belong to the
same subspace, and hence this is a label-preserving augmentation strategy under the SC model (Definition 1).
There are several options for randomly generating a ∈ Rn. For each cluster, we first (randomly) select q samples
among nl

p labeled samples, where 2 ≤ q ≤ nl

p . The nonzero entries are then randomly generated following two295

strategies:

• Uniform distribution in the interval [0, 1] where the vector a is normalized to have unit ℓ1 norm. This
augmentation strategy is useful for the applications where the samples are nonnegative, so that the
augmented samples are nonnegative as well.

• Gaussian distribution of mean 0 and variance 1. This random number generation is useful where the data300

is not necessarily nonnegative and spans the entire low-dimensional subspace.

The parameter q controls the locality of the augmented samples. A smaller q might generate more realistic
samples (to humans) in data domains such as image data. On the other hand, setting q as the maximum
possible value, nl

p , generates samples that better cover the intrinsic low-dimensional subspace.

4.2.3. Non-linear SC and manifold intrusion305

The linearity assumption in self-expressive based SC approaches might be restrictive in many real-world ap-
plications where the data lies on nonlinear low-dimensional manifolds. Fortunately, focusing on nearby samples
for the representations using kNN not only reduces the computational cost, but also leads to locality preserving
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representations. This is an important concept in analyzing smooth nonlinear manifolds in both the single and
multiple manifold learning literature; see, e.g., [2, Section 3.1]. Hence, our proposed kNN-based algorithms can310

also be used for clustering nonlinear manifolds.
Under the SC model, generating augmented data by linear interpolation will better cover the subspaces,

and hence lead to larger inradiuses. However, in the absence of the linearity assumption for the underlying
subspaces, linear interpolation might not be desirable and can give rise to a potential phenomenon known as
“manifold intrusion”, that is, generating out-of-distribution samples [57]. Figure 3 illustrates this phenomenon315

for samples from a real-world dataset. This figure displays 3-dimensional projection of samples (on the XYZ
axis) from the first category of the widely used COIL-20 data set which contains images of various objects
taken from different angles; see Section 5 for more details. We generate augmented samples following two
different schemes: (i) classical instance-based image transformation using rotation and scaling and, (b) linear
combination of five labeled samples using linear interpolation based augmentation. For the first scheme, the320

augmented samples are produced by applying five random strategies on each individual sample, and for the
second scheme 100 augmented samples are generated by convex linear combination of pairs of labeled samples.
In these figures, the original samples are plotted with red circle and the augmented samples are shown with
green dots. Comparing these two figures, we observe that carefully selected classic augmentation strategies can
generate samples that follow the intrinsic manifold structure accurately. However, generating samples using325

linear interpolation for nonlinear manifolds might result in samples that do not follow the data distribution nor
span the manifold structures. Increasing the number of labeled samples might improve spanning the manifold
structure but can potentially worsen the ineffective out-of-distribution phenomenon.

(a) Using classic strategies. (a) Using linear interpolation.

Figure 3: Illustrating the effect of nonlinearity in generating augmented samples for COIL-20.

In summary, linear combination of samples is a parameter-free and domain-independent augmentation strat-
egy, but it is typically not an effective augmentation strategy for data with nonlinear structures; see Table 5 for330

a numerical comparison.
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Remark 3. In neural networks literature, prominent data augmentation strategies can be divided into two
categories: (i) instance-based methods, which apply transformations on samples individually [25], and (ii) mixed-
example based methods, which combine several samples using various techniques for generating new samples [58,
59]. The proposed linear interpolation can be considered as special case of mixed-example augmentations. See335

Figure 4 for examples of different augmentation strategies which are applied on samples from the real-world
dataset COIL-20. Based on our numerical results, carefully selected and tuned instance-based strategies often
lead to higher performance boost compared to mixed-example ones. This is due to: (i) the limited diversity in the
samples generated using linear interpolations, and (ii) the aforementioned manifold intrusion phenomenon for
data on nonlinear manifolds. Moreover, instance-based strategies do not need any label information for the data340

generation, and hence can be used for unsupervised tasks as well. However, designing and selecting appropriate
label preserving strategies with no prior knowledge is still an ongoing research direction. On the other hand,
mixed-example based strategies have less parameters to tune and can be easily used for data with latent linear
structures, independent from the data domain.

Remark 4 (Which augmentation strategy?). Selecting the best augmentation strategies and tuning their pa-345

rameters is an ongoing research direction in auto/self-augmentation literature. The current existing works are
mostly focused on searching for the best strategies using feedback from the “validation set” which is possible
for the supervised scenarios [60, 61]. Hence, choosing strategies without label information and in the absence
of an “unsupervised quality measurement” for the obtained coefficient matrix is highly nontrivial. But luckily,
our numerical experiments indicated encouraging results which can be summarized into the following rules of350

thumbs:

• Generally, as the number of augmented samples increases, we should expect a better clustering perfor-
mance. However, this is in expense of higher computational complexity. We recommend generating [5-10]
augmented data per sample to ensure enough variety.

• As long as the augmentation transformation does not change the label of the samples, the performance355

is expected to improve. For example, using any subset from the set of augmentation strategies in {flip,
rotation, scaling, horizontal translation, vertical translation} improves the performance on the COIL-20
dataset (see Table A.1 in the supplementary material).

• Choosing augmentation strategies depends on the type of the dataset. It is common to use {flip, rotation,
scaling, translation} for general image data. Whereas more advanced strategies such as illumination and360

pose alternation can be utilized for further improvement in facial images.

5. Numerical results

In this section, we evaluate the proposed approaches on both synthetic and real-world data sets. All exper-
iments are implemented in Matlab (R2019b), and run on a laptop with Intel Core i7-9750H, @2.60 GHz CPU
and 16 GB RAM. The code is available from https://sites.google.com/site/nicolasgillis/code.365

Evaluation criteria. We use two metrics to evaluate the clustering algorithms:

• Error rate (err) which belongs to the interval [0−100] and the lower values correspond to better clustering
performance:

err = min
π, a permutation

∑n
i=1 1

(
ℓ(i) ̸= ℓ̂π(i)

)
n

× 100,
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Original sample flip rotation scale translation

(a) Instance-based

Original samples

Mixed augmented samples

(a) Mixed-example

Figure 4: Illustrating the augmentation strategies using samples from the COIL-20 data set.

where ℓ ∈ {1, . . . , p}n and ℓ̂ ∈ {1, . . . , p}n are the ground-truth and estimated labels by a clustering
algorithm, respectively. In addition, 1(.) is the indicator function which returns one if the input condition
is satisfied.

• Normalized Mutual Information (NMI) which we scale between 0 and 100. A larger NMI value indicates
a more accurate clustering.

NMI =
I(ℓ; ℓ̂)√
H(ℓ)H(ℓ̂)

× 100,

where I(·; ·) and H(·) are the mutual information metric and the entropy function, respectively.370

Tested algorithms. We compare the proposed approaches with state-of-the-art unsupervised and semi-supervised
SC approaches. For unsupervised SC, we selected popular SC algorithms including the classic algorithms of
SSC [6], LRR [7], and LSR [9]; as well as SC with elastic net regularization in EnSC (Elastic Net Subspace Clus-
tering) [19], greedy SC using Orthogonal Matching Pursuit (OMP) [49], nonlinear kernel based SC approach
in Kernel-based SSC (KSSC) [62], neural network based approach of Deep Subspace Clustering (DSC) [39],375

constraint based SC using Scaled Simplex Representation-based SC (SSRSC) and scalable kNN based SC
algorithms, namely kNN-SSC [52], kNN-LRR and kNN-LSR. For semi-supervised SC, in addition to the state-
of-the-art algorithms of Non-Negative LRR (NNLRR) [31], Non-Negative Low Rank and Sparse semi-supervised
clustering (NNLRS) [29], Semi-Supervised Sparse Representation (S3R) and Semi-Supervised Low-Rank Rep-
resentation (S2LRR) in [30], we compare the proposed AkS-SC with SSC-LP, LRR-LP, LSR-LP, which are380

based on the proposed AkS-SC without augmentation but using the iterative label propagation scheme. The
parameters of these approaches are selected and tuned according to the recommendations in the corresponding
papers.

Data sets. We use three real-world data sets:

• The COIL-20 data set (Columbia Object Image Library) [63] contains 1440 images of 20 objects. Each385

category has 72 images of an object which were captured from different views/poses. All the images
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are cropped and processed to 128 × 128 pixels. Following the common approach in SC literature, we
downsampled the images to to 32× 32 pixels [39].

• The MNIST data set contains 70000 images of 10 handwritten digits with the size 28×28 pixels. This
data set is divided into 60000 training images and 10000 testing images. We selected the first 50 images390

per digit from the MNIST test data set. Based on the common practice introduced in [49], we use a
scattering convolution network [64] to extract feature vectors of dimension 3472, and then project them
to dimension 100 using PCA.

• The USPS data set contains 9298 images of 10 handwritten digits which are obtained from the envelopes
by the U.S. Postal Service [65]. Each image is of size 16×16 pixels. We selected the first 100 images per395

digit.

In addition to this, we will use a carefully designed synthetic data generation model to analyze in detail the
effect of augmentation in the semi-supervised setting; see Section 5.2.1.

5.1. Analyzing the unsupervised A-SC

In this Section, we evaluate the proposed scalable unsupervised Ak-SC algorithms: Ak-SSC, Ak-LSR and400

Ak-LRR, on two real-world data sets of COIL-20 and MNIST.

5.1.1. Applying Unsupervised SC on COIL-20

Comparing performances. Table 1 provides the error rates and NMI on the tested unsupervised SC algorithms
on the COIL-20 data set. For our proposed augmented based SC algorithms, we used the standard predefined
augmentation strategies of flipping left to right, 5 random rotations within the range [−10◦, 10◦], and 5 random405

scalings within the range [0.9, 1.1]. Furthermore, we set k = 20 and λ = µ
maxi̸=j |X(:,i)⊤X(:,j)| , with µ = 30.

Due to the randomness of generated augmented samples, the average of error rate and NMI over 10 trials are
reported for Ak-SC algorithms.

Table 1: Comparison of unsupervised SC algorithms on the COIL-20 data set (best performance in bold, second best underlined).

Classic State-of-the-art kNN-based Proposed augmented based

Evaluation SSC LRR LSR OMP EnSC KSSC DSC SSRSC kNN-SSC kNN-LRR kNN-LSR Ak-SSC Ak-LRR Ak-LSR

err 25.90 35.63 35.76 33.89 22.08 14.93 4.51 29.49 23.33 24.37 22.29 0.31±0.23 0.48±0.20 0.20±0.27
NMI 88.67 75.98 71.86 78.86 88.30 95.71 97.14 79.82 93.03 86.34 86.41 99.64±0.26 99.48±0.20 99.78±0.29

Table 2: Computational time of unsupervised SC algorithms on the COIL-20 data set (in minutes).
Classic State-of-the-art kNN-based Proposed augmented based

Time (min) SSC LRR LSR OMP EnSC KSSC DSC SSRSC kNN-SSC kNN-LRR kNN-LSR Ak-SSC Ak-LRR Ak-LSR

0.48 3.11 0.01 0.03 0.02 0.25 0.13 0.06 0.98 2.97 0.93 6.12 12.76 6.38

We observe that:

• All augmented SC algorithms significantly outperform all other unsupervised SC approaches. There is410

a significant gap between the performance of classic algorithms and the corresponding augmented ones:
from 5% error rate by a highly fine-tuned neural network to 0.5% for all augmented algorithms. Note that
that DSC is proven to be ill-posed and the high accuracy is due to the use of an adhoc post-processing
step [66]. Nevertheless, data augmentation using classic image transformations can beat the performance
of a very fine-tuned neural network by a significant number.415
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• Augmented SC algorithms outperform the kNN-based algorithms. This shows that the considerable
improvement in Ak-SC algorithms is due to the addition of augmented samples, not to the use of kNN.

• The improvement in the performance of augmented SC algorithms is not limited to the sparsity-promoting
SSC. In fact, Ak-LRR and Ak-LSR perform similarly. Hence, although we have only provided the geometri-
cal motivations for using augmented samples for SSC (Section 3), augmentation improves the performance420

of other SC models as well.

In fact, the additional implicit information in the augmented samples helps to improve the “quality” of the
coefficient matrix by strengthening the correct connections between the samples from same clusters and simul-
taneously weakening/eliminating the wrong connections between the samples from different clusters. This is
illustrated for a specific sample from the COIL-20 dataset in the supplementary material.425

Remark 5 (Influence of k and of augmentation strategies). The numerical experiments above do not provide
information on the sensitivity with respect to the value of k in kNN, and to the choice of the augmentation
strategies. In the supplementary material, we provide extensive numerical experiments about this question.
We observe that generating augmented samples using any augmentation strategy within the set { {flipping},
{rotation, scaling}, {flipping, rotation, scaling}} results in a notable improvement for all the unsupervised Ak-430

SC algorithms, independently of the value of k. Moreover, as the augmentation {flipping, rotation, scaling}
provides the most implicit information in the self-expressive dictionary, it leads to the highest performance
improvement among the other strategies.

The computational time of unsupervised SC algorithms (in minutes) are reported in Table 2. As expected,
using augmented data increases the computational time noticeably. However, the computational burden is435

mostly due to the use of kNN in forming the local dictionary for each sample. This step can be accelerated by
using libraries such as VLFeat [67].

5.1.2. Applying Unsupervised SC on MNIST

Comparing performances. We compared the performance of Ak-SC algorithms with other state-of-the-art SC
algorithms on the MNIST-test data set as well. For our proposed Ak-SC algorithms, we have set k = 30 and440

λ = µ
maxi̸=j |X(:,i)⊤X(:,j)| , with µ = 100. We use 5 random scaling within the range [0.8, 1.2] and 5 random

rotations with the rotation angle chosen randomly from the range [−30◦, 30◦]. We report the average results
of 10 trials for Ak-SC algorithms. The error rate and NMI corresponding to the selected SC algorithms are
summarized in Table 3.

For more than 6 digits, augmented based SC algorithms significantly outperform other SC algorithms. All445

three augmented SC algorithms, Ak-SSC, Ak-LSR and Ak-LRR, perform similarly in most of the cases and
outperform the corresponding kNN-based algorithms. This confirms that the improvement in the performance
is due to the augmented samples. Moreover, the performance of Ak-SC is not sensitive to the parameter of k;
see the supplementary material for numerical experiments. Note that DSC was tested on the raw images for
this dataset, because it is a convolutional neural network and cannot be tested on the projected data.450

5.1.3. Applying Unsupervised SC on USPS

Comparing performances. The performance of Ak-SC algorithms are compared with other SC algorithms on
the USPS data set in the Table 4. For the proposed Ak-SC algorithms, we have used the same parameters
as for the MNIST data set. The numerical results confirm the superiority of our proposed augmented based
algorithms for the USPS data set.455
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Table 3: Comparison of unsupervised SC algorithms on the MNIST-test data set (best performance in bold, second best underlined).

Classic State-of-the-art kNN-based Proposed augmented based

Digits Evaluation SSC LRR LSR OMP EnSC KSSC DSC SSRSC kNN-SSC kNN-LRR kNN-LSR Ak-SSC Ak-LRR Ak-LSR

[0:1]
err 0 49.00 0 0 1.00 0 10.00 1.00 0 0 0 0±0 0±0 0±0
NMI 100 3.54 100 100 92.91 100 61.90 92.91 100 100 100 100±0 100±0 100±0

[0:2]
err 0 50.00 0 0.67 0 0 36.00 16.00 0.66 1.33 3.33 2.80±0.61 1.46±1.32 3.06±0.46
NMI 100 13.02 100 97.02 100 100 48.30 65.28 97.01 94.87 89.96 90.61±1.98 94.75±4.41 89.55±1.48

[0:3]
err 32.50 38.00 1.50 5.00 34.00 1.50 33.50 11.50 3.5 5.00 6.50 2.00±0.40 1.50±0.47 2.45±0.15
NMI 80.87 41.94 95.87 85.92 80.51 95.20 68.63 73.89 88.64 86.76 82.00 93.8±1.15 95.22±1.41 92.59±0.59

[0:4]
err 27.60 4.00 1.20 4.00 27.20 1.60 35.20 2.40 2.00 4.40 4.80 2.20±0.33 1.92±0.59 2.88±0.36
NMI 85.44 90.41 96.69 89.68 86.82 95.47 60.46 93.87 94.26 89.68 89.18 93.99±0.82 94.75±1.39 92.23±1.12

[0:5]
err 22.33 12.67 9.33 23.33 23.67 7.67 33.66 10.00 9.66 10.66 11.66 3.33±0.27 3.03±0.29 4.40±1.23
NMI 83.87 80.61 85.76 80.66 83.61 88.80 55.88 84.64 83.12 81.53 78.92 92.06±0.73 92.55±0.72 90.33±1.33

[0:6]
err 20.29 10.00 8.00 23.14 20.86 7.71 47.42 13.14 9.42 9.71 10.54 3.68±0.92 3.80±0.78 4.14±0.20
NMI 85.18 86.13 87.67 79.28 85.62 88.24 44.94 82.25 84.28 83.90 82.42 91.95±1.17 91.55±1.18 90.83±0.50

[0:7]
err 19.50 8.00 6.75 24.75 20.25 8.00 42.50 14.00 9.50 9.75 9.50 3.80±0.28 3.95±0.34 4.70±1.12
NMI 84.56 87.02 88.43 77.08 83.88 88.24 50.91 84.78 84.80 84.55 84.49 92.08±0.58 91.79±0.78 90.92±1.10

[0:8]
err 18.44 21.33 22.22 22.22 18.67 14.22 42.88 20.22 20.80 18.86 16.24 6.57±0.83 6.44±0.77 7.22±0.77
NMI 84.47 78.53 79.43 75.77 87.59 79.97 53.98 79.38 71.87 74.89 75.89 87.58±0.94 87.87±0.67 86.68±0.75

[0:9]
err 18.80 21.40 21.80 27.80 20.00 15.80 50.20 19.60 20.36 19.32 19.00 8.40±0.76 8.32±1.05 8.40±0.44
NMI 82.66 77.82 79.51 70.72 81.63 77.89 45.93 80.04 71.61 72.81 72.38 85.32±0.75 85.41±1.03 85.09±0.71

Table 4: Comparison of unsupervised SC algorithms on the USPS data set (best performance in bold, second best underlined).

Classic State-of-the-art kNN-based Proposed augmented based

Evaluation SSC LRR LSR OMP EnSC KSSC DSC SSRSC kNN-SSC kNN-LRR kNN-LSR Ak-SSC Ak-LRR Ak-LSR

err 55.00 50.90 29.70 49.50 58.50 19.80 31.30 28.40 23.40 15.60 14.30 6.65±0.48 7.54±1.78 8.56±3.94
NMI 51.76 42.86 71.00 48.55 48.71 82.03 67.18 76.65 76.59 76.47 77.82 87.67±0.67 86.48±1.87 85.92±1.48

5.2. Analyzing the semi-supervised AS-SC

In this section, we evaluate the effect of augmentation in our proposed semi-supervised algorithms. We first
use a synthetic data generation model which is inspired by [8] to illustrate the geometric insights provided in
Section 3 for augmented semi-supervised SSC (AS-SSC). We then compare the performance of the proposed
approaches with the state-of-the-art semi-supervised SC algorithms on the two real-world data sets.460

5.2.1. Synthetic data sets

As we discussed in Section 3, the success of SSC depends on two factors: inradius and subspace incoherence.
In order to control the subspace incoherence between synthetic subspaces, we follow the common semi-random
model in [8], and consider three disjoint subspaces with intrinsic dimension d1 = d2 = d3 = 3 in the ambient
space of six dimensions, d = 6. The bases of the three subspaces, {Uj}3j=1 ∈ R6×3, are generated according to
the following deterministic model:

U1 =

(
cos(θ)I3
sin(θ)I3

)
, U2 =

(
cos(θ)I3
− sin(θ)I3

)
, U3 =

(
I3
03

)
,

where θ ∈ [0, π
2 ] controls the affinity between the three subspaces. The lower value of θ corresponds to higher

subspace incoherence and closer subspaces which leads to a more challenging SC problem. We set n = 60 and
for each subspace, we generate n/3 random samples by linear combinations of Uj (j = 1, 2, 3). The weights in
the linear combinations are randomly chosen using the Gaussian distribution with mean 0 and variance 1. The465

samples are normalized to have unit ℓ2 norm. The parameters of the optimization problem for AS-SSC are set
to λ = µ

maxi̸=j |X(:,i)⊤X(:,j)| , with µ = 50 and λ2 = 1. In fact, AS-SSC is not sensitive to the value of λ2 and the

results are almost the same for a large range of λ2 ∈ [1, 10]. The supplementary material provides a detailed
parameter sensitivity analysis.
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Illustration of the label propagation. Let us illustrate the effect of label propagation on the coefficient matrix470

and the corresponding implicit graph structure. The parameter θ is set to 10◦, hence, the subspaces are close to
each other. We randomly select four samples from each subspace as the given labeled samples and produce 50
augmented samples for each subspace using linear combination of the labeled samples, with the linear weights
set by random Gaussian distribution.

The connectivity graph corresponding to the coefficient matrix Cf for each iteration of the AS-SSC is shown475

in Figure 5. The estimated labels in the matrix F ∈ R210×3 at each iteration are used as the colors of the nodes
in the graph. Additionally, three symbols of {cross, circle, diamond} are used to indicate the assigned labels
to the samples of each cluster, that is, argmaxF (j, :) for j = 1, . . . , n. In particular, each row of the matrix F
is a vector with three entries which can be used as a RGB triplet to color the corresponding node. The graph
obtained after the first iteration is shown in (a). We observe many wrong connections between the samples480

of different clusters, and, consequently, the error rate corresponding to this graph is 11.67%. Regardless, the
labels of several samples are already estimated with high confidence which is reflected in their corresponding
node color: there are several nodes with absolute green, red and blue colors which are equivalent to (1,0,0),
(0,1,0) and (0,0,1) in the label matrix F . The obtained label information is used in the next iteration to reduce
the connections between the samples with different estimated labels which reduces the error rate to 1.67%.485

Eventually, the error rate reduces to 0% after the third iteration and the iterative algorithm converges after five
iterations.

Number of labeled samples vs the number of augmented samples. Recall that according to (3) the value of inradius
has a key role for successful clustering of nearby subspaces, that is, for high values of subspace incoherence.
Here, we use a numerical example to analyze the impact of subspace incoherence on the performance of AS-SSC490

and investigate the effect of the number of labeled samples and the number of the augmented samples on the
inradius which is indirectly measured by the clustering error rate.

We consider three different angles between subspaces in the synthetic data generation model, namely θ ∈
{10, 15, 20}◦. A smaller θ corresponds to a higher value for subspace incoherence. The average error rate
over 10 trials for both the first iteration of the AS-SSC (merely using the augmented data) and after applying495

iterative AS-SSC using label propagation are reported in Figure 6. Several percentages of labeled samples (%)
are considered, namely {0, 10, 20, 30, 40}, and the number of augmented samples are chosen in the set {0, 10,
25, 50, 100, 200}.

We observe that:

• AS-SSC using iterative LP always decreases the average error rate and improves the quality of clustering.500

• Increasing the number of labeled samples generally improves the performance as it increases the diversity
of the augmented samples and introduces more restrictions on the possible connections between the labeled
samples from different clusters.

• A significant decrease in the error rate is observed by the addition of 50 augmented samples (per cluster).
Increasing the number of augmented samples to 100 and 200 leads to further slight decrease in the error505

rate.

• The error rate corresponding to classic SSC is the entry on the top left corner of each table. AS-SSC
significantly decreases this error rate using any number of augmented samples.

• The intrinsic dimension of each subspace is set to three. The 20% percentage labeled samples is equal to
4 labeled samples for this synthetic example. We observe that as soon as the number of labeled samples is510

higher than the intrinsic dimension of subspaces, AS-SSC results in a major improvement in the clustering
performance.
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(a) iteration 1, err = 11.67% (b) iteration 2, err = 1.67%

(c) iteration 3, err =0% (d) iteration 4, err = 0%

Figure 5: Illustration of the impact of label propagation on the graph connectivity through different iterations in AS-SSC.

• As the angles between subspaces increase and, consequently, the subspace incoherence decreases, the SC
problem gets less challenging and the amount of decrease in the error rate due to AS-SSC becomes less
evident. This is completely in line with the theoretical condition in (3). As the incoherence decreases, the515

value of the inradius does not need to be as large to obtain subspace preserving coefficients, and hence
the data augmentation has less impact on the corresponding SC problem.

Convergence analysis. The proposed AS-SSC is an iterative approach that updates the two matrices, C and F ,
alternatively. We study the convergence of AS-SSC depending on two essential factors: number of augmented
samples and the angle between subspaces. Let F (i) and C(i) denote the estimated matrix F and C in the520

iteration i, respectively. We compute the average of error rate, ∥F (i)−F (i−1)∥
∥F (i−1)∥ and ∥C(i)−C(i−1)∥

∥C(i−1)∥ over 100 trials
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(c) θ = 20◦, one iteration
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(d) θ = 10◦, iterative LP
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(e) θ = 15◦, iterative LP
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(f) θ = 20◦, iterative LP

Figure 6: The effect of number of augmented samples vs percentage of labeled samples on the average of error rate of AS-SSC over
10 trials for the synthetic data set. The experiment is implemented for various subspace incoherences which is controlled by the
subspace angle parameter, θ.

for different iterations and reported the results in Figure 7 (a)-(f).
We observe that in all four cases, the error rate stabilizes in less than 10 iterations. Moreover, with stabiliza-

tion of ∥F (i)−F (i−1)∥
∥F (i−1)∥ , the corresponding error rate does not change significantly between consequent iterations

as well.525

5.2.2. Real-World data sets

We now evaluate the performance of the proposed algorithms AkS-SSC, AkS-LSR and AkS-LRR, on the
two considered real data sets, COIL-20 and MNIST.

COIL-20: Impact of the augmentation strategy on AkS-SC. We first investigate the effect of augmentation
strategies on the performance of AkS-SC algorithms. We consider three possible sets of augmentation strategies530

that are: {linear interpolation}, {rotation, scale}, {flip, rotation, scale}. Identical to the setting for the unsuper-
vised algorithms, we set k = 20, λ = µ

maxi̸=j |X(:,i)⊤X(:,j)| , with µ = 30 and consider 5 random transformations

for scaling and rotation. The parameter λ2, which couples the coefficient matrix (C) and the labels (F ), is set
to 1. We consider three values for the number of labeled samples, {4,6,10}, and randomly select the labeled
samples over 10 trials. For the linear interpolation augmentation strategy, we set the number of augmented535

samples for each class as 720, which is equal to the total number of augmented samples for each class by applying
20
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Figure 7: Convergence analysis of AS-SSC. Average of error rate,
∥F (i)−F (i−1)∥

∥F (i−1)∥
and

∥C(i)−C(i−1)∥
∥C(i−1)∥

over 100 trials for different

iterations.

5 random rotations and 5 random scaling on each sample (for a fair comparison) and use random nonnegative
weightings for the pairwise linear combinations. Table 5 reports the average error rate and NMI of AkS-SSC,
AkS-LRR and AkS-LSR for each of augmentation strategy.

We observe that in contrast to the unsupervised setting in Table 1, the sensitivity to the augmentation540

strategies is less evident and all AkS-SC algorithms have very good clustering performance (above 90% in all
cases). For a few labeled samples, as few as 4, the clustering error rate can be reduced to zero. However, the
linear interpolation augmentation strategy which is based on the linearity assumption for generating augmented
samples does not perform as well as other strategies. This indicates that for COIL-20 data set, the global linearity
assumption is not a valid assumption. Furthermore, the results confirm that constructing a high-quality graph545

is essential for reliable label propagation.

COIL-20: comparing semi-supervised SC algorithms. Table 6 compares the performance of the proposed AkS-
SC algorithms with state-of-the-art semi-supervised SC algorithms. For a clear evaluation of the effect of
augmentation on the performance of AkS-SC algorithms, the performance of the AkS-SC algorithms using LP
but without any augmented samples are also reported as SSC-LP, LRR-LP and LSR-LP. The error rate of550

NNLRR, NNLRS, S3R and S2LRR are borrowed from [54] (the NMI was not reported for these approaches).
We observe that:
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Table 5: Evaluation of AkS-SC on COIL-20 with respect to different augmentation strategies.

# Labeled Augmentation strategy Evaluation AkS-SSC AkS-LRR AkS-LSR

4

{Linear Interpolation}
err 7.70±1.74 8.79±1.97 10.63±0.64
NMI 94.85±0.81 93.97±0.91 91.96±0.64

{rotation,scale}
err 0±0 0±0 0.36±0.50
NMI 100±0 100±0 99.62±0.53

{flip,rotation,scale}
err 0±0 0±0 0.16±0.37
NMI 100±0 100±0 99.84±0.34

6

{Linear Interpolation}
err 5.20±1.175 5.94±0.79 8.58±1.26
NMI 96.01±96.01 95.83±0.58 93.98±1.00

{rotation,scale}
err 0±0 0±0 0±0
NMI 100±0 100±0 100±0

{flip,rotation,scale}
err 0±0 0±0 0.11±0.24
NMI 100±0 100±0 99.88±0.26

10

{Linear Interpolation}
err 1.65±0.84 3.30±0.61 4.77±0.66
NMI 98.50±0.61 97.23±0.38 95.82±0.20

{rotation,scale}
err 0±0 0±0 0±0
NMI 100±0 100±0 100±0

{flip,rotation,scale}
err 0±0 0±0 0±0
NMI 100±0 100±0 100±0

• AkS-SC algorithms outperform other state-of-the-art algorithms by a large margin. This is due to the
explicit impact of augmentation and implicit nonlinearity consideration using kNN-based dictionary con-
struction.555

• The proposed iterative block coordinate descent algorithm for label propagation works well for this data
set, and the kNN-based algorithms SSC-LP, LRR-LP and LSR-LP perform well on this data set.

Table 6: Comparison of semi-supervised SC algorithms on the COIL-20 data set (best performance in bold, second best underlined).

Label Propagation based State-of-the-art Proposed augmented based

# Labeled Evaluation SSC-LP LRR-LP LSR-LP NNLRR NNLRS S3R S2LRR AkS-SSC AkS-LRR AkS-LSR

4
err 6.00±1.86 11.52±1.45 11.52±1.19 14.55±1.35 16.71±2.67 13.36±2.68 23.57±2.54 0±0 0±0 0.16±0.37
NMI 95.57±1.01 92.46±1.22 92.19±0.72 - - - - 100±0 100±0 99.84±0.34

6
err 3.95±0.91 8.12±057 9.80±0.65 11.52±1.22 15.50±2.81 11.74±3.45 20.00±2.46 0±0 0±0 0.11±0.24
NMI 96.50±0.59 94.30±0.65 93.16±0.36 - - - - 100±0 100±0 99.88±0.26

10
err 0.93±0.86 5.01±1.40 7.23±0.82 8.67±1.24 10.57±2.99 7.18±0.32 15.81±2.32 0±0 0±0 0±0
NMI 99.01±0.82 95.80±0.93 94.48±0.36 - - - - 100±0 100±0 100±0

MNIST: comparing semi-supervised SC algorithms. We compare the performance of proposed scalable AkS-
SC algorithms on the processed MNIST-test data set. For this experiment, we considered 50 samples for
each digit from [0 : 9]. For the proposed semi-supervised approaches, we used the general augmentation560

strategies of scaling and rotation. For each sample, we applied 5 random scaling operators with the scaling
parameter chosen randomly among the range [0.8, 1.2] and 5 random rotations with the rotation angle chosen
randomly within [−30◦, 30◦]. The parameters of all proposed approaches are set as λ = µ

maxi̸=j |X(:,i)⊤X(:,j)| ,

with µ = 100 and λ2 = 1. We considered various number of randomly selected labeled samples and reported
the average results over 10 trials in Table 7. We observe that the proposed augmented based algorithms565

significantly outperform other approaches, including the kNN-based algorithms. This highlights the essential
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role of augmentation in improving the performance. The augmented based approaches perform similarly on
this data set and the improvement in the performance was independent of the regularization function for the
coefficient matrix. Hence, the augmentation is capable of significantly improving the SC performance regardless
of the regularization function.570

Table 7: Comparison of semi-supervised SC algorithms on the MNIST data set (best performance in bold, second best underlined).
Label Propagation based State-of-the-art Proposed augmented based

# Labeled Evaluation SSC-LP LRR-LP LSR-LP NNLRR NNLRS S3R S2LRR AkS-SSC AkS-LRR AkS-LSR

4
err 13.60±2.46 17.52±3.51 14.14±2.59 45.57±0.31 - 31.84±3.35 37.43±8.38 8.04±0.65 7.90±0.69 7.98±0.62
NMI 77.59±3.24 74.24±3.13 76.90±3.48 49.52±0.30 - - - 85.78±0.84 86.09±0.97 85.91±0.78

6
err 10.98±0.74 12.94±1.05 11.92±1.03 45.68±0.17 - 26.72±1.83 28.18±4.81 6.26±0.71 6.14±0.84 6.28±0.73
NMI 80.80±1.07 78.81±1.16 79.45±1.25 49.40±0.27 - - - 88.50±1.03 88.68±1.28 88.45±1.05

10
err 8.24±0.84 8.18±1.48 8.28±1.20 46.02±0.34 - 22.07±1.37 22.82±3.00 5.80±0.71 5.72±0.68 5.78±0.75
NMI 85.04±1.52 85.32±2.22 84.8±1.97 49.10±0.35 - - - 89.28±1.18 89.43±1.21 89.39±1.26

6. Conclusion

In this paper, we have proposed a general framework for combining data augmentation with the state-of-the-
art self-expressive SC models using an enlarged dictionary; see the model (6) for the unsupervised setting, and
the model (8) for the semi-supervised setting. In particular, we have incorporated data augmentation within
three representative state-of-the-art SC algorithms, namely SSC, LRR and LSR. We have provided geometric575

arguments explaining why data augmentation can significantly benefit SC. For the data augmentation, we relied
on two common strategies, (i) instance-based using classical data transformation functions, and (ii) mixed-
example based relying on the linearity of the SC problem, the former being preferable if available. Finally, we
have illustrated on synthetic and real date sets the significant improvement data augmentation brings to SC
algorithms.580

An interesting and crucial research direction is to provide strategies for selecting effective augmentations,
in particular in the absence of prior knowledge. In parallel, it would also be important to provide theoretical
guarantees for augmented SC approaches.
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Appendix A. Optimizing the semi-supervised AS-SSC715

In this section, we provide the details for solving (8) when R(C) = ∥C∥1, the other cases are presented in
the supplementary material.

We rely a two-block coordinate decent method to tackle AS-SSC. Our iterative approach alternates between
updating C while keeping F fixed, and vice versa.

Updating the coefficient matrix C. We use ADMM to optimizing the problem in (8) with respect to the matrix
C, while keeping the matrix F fixed. By introducing the auxiliary matrix A ∈ Rñ×n, this problem can be
rewritten as:

min
C,A

∥A∥1 +
λ

2
∥X − X̃C∥2F + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |A(i, j)|,

s.t. A = C, and A(Φj , j) = 0, for j = 1, . . . , n. (A.1)

We add the equality constraint A = C into the objective function as:

min
C,A,∆

∥A∥1 +
λ

2
∥X − X̃C∥2F + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |A(i, j)|

+
ρ

2
∥C −A∥2F + tr(∆⊤(C −A)),

s.t. A(Φj , j) = 0, for j = 1, . . . , n, (A.2)

where ∆ ∈ Rñ×n is the matrix of Lagrange multipliers. Optimizing this problem using ADMM consists of an720

iterative procedure with three updating steps at each iteration:

1. Optimizing with respect to the matrix C while keeping the rest of variables fixed. By taking the derivative
with respect to C and setting it to zero, we obtain:(

λX̃⊤X̃ + ρIñ
)
C = λX̃⊤X + ρA−∆,

where Iñ is an identity matrix with size ñ× ñ. The obtained problem is a system of linear equations.

2. Optimizing with respect to the matrix A with the rest of variables assumed as fixed:

min
A

∥A∥1 + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |A(i, j)|+ ρ

2
∥C −A∥2F + tr(∆⊤(C −A))

s.t. A(Φj , j) = 0 for j = 1, . . . , n. (A.3)

We rewrite the problem as:

min
A

∥W̄ ⊙A∥1 +
ρ

2
∥A− (C +

∆

ρ
)∥2F s.t. A(Φj , j) = 0 for j = 1, . . . , n, (A.4)

where W̄ (i, j) = 1 + λ2∥F (i, :)− F (j, :)∥22. This problem has the following closed-form solution:

J = T
(
C +

∆

ρ
,
W̄

ρ

)
, and

A(i, j) =

{
J(i, j), i /∈ Φj

0, i ∈ Φj
for i = 1, . . . , ñ and j = 1, . . . , n,

where T is the soft-thresholding operator, T (a, b) = max(0, |a| − b) sign(a), which is applied entry-wise.
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3. The Lagrange multiplier is updated as follows

∆ = ∆+ ρ
(
C −A

)
.

These three steps are computed iteratively till some convergence criterion is satisfied. We use the criterion of
∥A− C∥2F ≤ ϵ and set ϵ = 2× 10−4, following [6].725

Updating the estimated label matrix F . Optimizing (8) with respect to the matrix F requires to solve

min
F

ñ∑
i=1

ñ∑
j=1

∥F (i, :)− F (j, :)∥22 |Ã(i, j)|+ γ1 tr
(
(F − Ỹ )⊤U(F − Ỹ )

)

+ γ2

ñ∑
i=1

ñ∑
j=1

∥F (i, :)− F (j, :)∥22 S̃(i, j), (A.5)

where Ã = Rñ×ñ is defined as

Ã =

(
C(1 : n, 1 : n) 1

2C(n+ 1 : ñ, 1 : n)⊤
1
2C(n+ 1 : ñ, 1 : n) 0ñ−n

)
.

The matrix 0ñ−n is of size ñ − n × ñ − n and all entries are set to zero. The square matrix S̃ is constructed
from the matrix S similarly. Note that we have discarded the constraints Fe = e and F ≥ 0 because they will
be satisfied automatically; see Appendix B. We define the Laplacian matrices LÃ and LS̃ as LÃ = DÃ − Ã

and LS̃ = DS̃ − S̃, where DÃ and DS̃ are the diagonal matrices of the corresponding vertex degrees. Using this
definition, we rewrite (A.5) as

min
F

tr
(
F⊤ LÃ F

)
+ γ1 tr

(
(F − Ỹ )⊤U(F − Ỹ )

)
+ γ2 tr

(
F⊤ LS̃ F

)
.

By taking the derivative of the aforementioned problem and setting it to zero, we have the following linear
system of equations: (

LÃ + γ1 U + γ2LS̃

)
F = γ1 UỸ . (A.6)

The AS-SSC algorithm is summarized in Algorithm 1.

Appendix B. Matrix F is row stochastic at every iteration

The optimization problem for the matrix F reduces to solving a system of linear equations in (A.6), with the

solution F =
(
LÃ+ γ1 U +γ2LS̃

)−1(
γ1UỸ

)
. Let us show that the solution of this system, F , is row-stochastic,

that is, Fe = e and F ≥ 0. Let us first show that Fe = e. Since U is diagonal, and LÃ and LS̃ are Laplacian
matrices, we have (

LÃ + γ1 U + γ2LS̃

)
e = γ1 Ue = γ1 diag(U),

where e is the all-one vector, and diag(U) is the vector containing the diagonal entries of U . Therefore(
LÃ + γ1 U + γ2LS̃

)−1(
γ1 diag(U)

)
= e.
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Algorithm 1 Iterative algorithm for augmented semi-supervised SSC (AS-SSC)

Input: X ∈ Rd×n, parameters λ, λ2, γ1 and γ2, label information Y , the augmented samples X̄ and the set
Φj (for j = 1, .., n) which contains the indices of the corresponding augmented samples for each data.

Output: Pairwise coefficient matrix Cf , estimated label matrix F .

1: Form the self-expressive dictionary X̃ = [X | X̄] ∈ Rd×ñ.
2: Initialization: set the binary matrix Ỹ as an extension of Y defined as: Ỹ = [Y ; 0(ñ−n)×p]. Initialize the

estimated labels F as Ỹ . Set U and S as in (7) and (9), respectively.
3: while convergence criterion is not satisfied do
4: Initialization for updating the coefficient matrix C using ADMM [48]: C = A = ∆ = 0, µ = λ

maxi̸=j |x⊤
j xi|

,

ρ = λ.
5: while ADMM algorithm has not converged do
6: Update C by optimizing the linear system of equations in(

λX̃⊤X̃ + ρIñ
)
C = λX̃⊤X + ρA−∆,

7: Update A by applying soft-threshoding operator as:

J = T
(
C +

∆

ρ
,
W̄

ρ

)
,

A(i, j) =

{
J(i, j), i /∈ Φj

0, i ∈ Φj
for i = 1, . . . , ñ and j = 1, . . . , n,

where W̄ (i, j) = 1 + λ2∥F (:, i)− F (:, j)∥22 for i = 1, . . . , ñ and j = 1, . . . , n.
8: Update the Lagrange multiplier ∆ by:

∆ = ∆+ ρ
(
C −A

)
.

9: end while
10: Update the estimated label matrix F by optimizing the linear system of equations in(

LÃ + γ1 U + γ2LS̃

)
F = γ1 UỸ .

11: end while
12: Compute the squared coefficient matrix Cf by Cf (i, j) =

∑
k∈Ω(i) |A(k, j)|, for i, j = 1, . . . , n

On the other hand, the matrices U and Ỹ are binary matrices where the nonzero entries correspond to the
labeled samples. This implies that UỸ = Ỹ , and that Ỹ e is equal to a binary vector with nonzero entries
corresponding to the labeled samples which is equal to diag(U). Hence(

γ1UỸ
)
e = γ1 diag(U).

Finally

Fe =
(
LÃ + γ1 U + γ2LS̃

)−1(
γ1UỸ

)
e =

(
LÃ + γ1 U + γ2LS̃

)−1
γ1 diag(U) = e,

so that Fe = e.
To show that F ≥ 0, observe that the matrix G = LÃ + γ1 U + γ2LS̃ is a Stieltjes matrix, that is, a

real symmetric positive definite matrix with nonpositive off-diagonal entries, since U is diagonal with positive730
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diagonal elements, and LÃ and LS̃ are Laplacian matrices (hence G is diagonally dominant). A Stieltjes matrix

is necessarily an M-matrix so that its inverse is nonnegative3. Note that U and Ỹ are both nonnegative matrices,
hence, the matrix F is the multiplication of nonnegative matrices (namely, G−1 ≥ 0 and UỸ ) and is therefore
nonnegative as well.

3See, e.g., https://en.wikipedia.org/wiki/Stieltjes_matrix
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A. Supplementary Material

In this supplementary material, we provide further definitions and details for subspace preserving conditions
in SSC and optimizing the unsupervised Ak-SC and semi-supervised AkS-SC problems.

A.1. Definitions for the subspace preserving condition for SSC
The subspace preserving condition for SSC involves several concepts which are defined as follows:5

Definition 1 (Dual point [1]). Let X(:, j) ∈ Sℓ. Suppose X
(ℓ)
−j are the normalized samples from the subspace Sℓ,

excluding the sample X(:, j) and U (ℓ) ∈ Rd×dℓ is an orthonormal basis for this subspace. Let A
(ℓ)
−j = U (ℓ)⊤X

(ℓ)
−j

be the projected coordinates of these samples on the subspace Sℓ. The Lagrangian dual problem of (2) with A(ℓ)

as the expressive dictionary, for the projected sample A(:, j) = U (ℓ)⊤X(:, j) is as follows [1, 2]:

W (:, j) = argmaxw w⊤A(:, j) such that ||A(ℓ)⊤
−j w||∞ ≤ 1, (1)

where ||·||∞ returns the the maximum absolute value of input vector entries. The solution W (:, j) with minimum
Euclidean norm is called the dual point corresponding to the sample X(:, j) within subspace Sℓ.

This is illustrated in Figure A.1 for samples from an exemplary two-dimensional linear subspace. In this
Figure, the projected sample x and the corresponding dual point are shown with cross and square signs,

respectively. The rest of projected samples and their negative counterparts, that is, [A
(ℓ)
−x , −A(ℓ)

−x] are shown10

in red circles. The convex hull of these samples, that is, Pℓ
−x and the corresponding dual convex hull (Pℓ

−x)
∗

are shown in red solid and green dotted lines, respectively.

Definition 2 (Dual direction [1]). The dual direction V (:, j) ∈ Rd corresponding to the sample X(:, j) from the
subspace Sℓ is defined as:

V (:, j) = U (ℓ) W (:, j)

||W (:, j)||2
. (2)

Definition 3 (Subspace Incoherence [2]). The subspace incoherence of sample X(:, j) ∈ Sℓ with respect to
samples from other subspaces is defined as:

µ(X(:, j)) = max

{
||X(i)⊤ V (:, j)

||V (:, j)||2
||∞, i = 1, . . . , p, i ̸= ℓ

}
,

where X(i) is a matrix which contains the samples from the i-th subspace.
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Figure A.1: The dual point corresponding to the sample x, shown with square and cross signs, respectively.

A.2. Optimizing the unsupervised Ak-SC algorithms

We have used iterative ADMM for optimizing the unsupervised problem for Ak-SC model. Depending on the15

regularization function R(C) = {∥C∥1, ∥C∥2F , ∥C∥∗}, we have three algorithms: Ak-SSC, Ak-LSR and Ak-LRR
which are summarized in Algorithms 1, 2 and 3, respectively.

Algorithm 1 ADMM for optimizing Ak-SSC by setting R(C) = ∥C∥1
Input: X ∈ Rd×n, m predefined augmentation strategies, parameters λ and k.
Output: Pairwise coefficient matrix Cf .

1: Initialization: Apply m augmentation strategies to obtain X̃ ∈ Rd×nm, C̄ = A = ∆ = 0, µ = λ
maxi̸=j |xT

j xi|
,

ρ = λ
2: for each sample X(:, j) in X do
3: Set Dj = Nk(X(:, j)) as the dictionary, Ψj as the indices of Nk(X(:, j)) with Ψj ∩{j+(k− 1)n}m+1

k=1 = ∅.
4: while some convergence criterion is not met do

5: A(:, j)←
(
µD⊤

j Dj + ρIk
)−1

(µD⊤
j X(:, j)+ ρC̄(:, j)−∆(:, j)) where Ik is the identity matrix of dimen-

sion k.
6: C̄(:, j)← T 1

ρ
(A(:, j) + ∆(:, j)/ρ)

where Tγ(y) = max (0, |y| − γ) sign(y) is the soft-thresholding operator.
7: ∆(:, j) = ∆(:, j) + ρ(A(:, j)− C̄(:, j))
8: end while
9: Set C̃(Ψj , j) = C̄(:, j)

10: end for
11: Set Cf as block-wise sum of submatrices in C̃.

2



Algorithm 2 ADMM for optimizing Ak-LSR by setting R(C) = ∥C∥2F
Input: X ∈ Rd×n, m predefined augmentation strategies, parameters λ and k.
Output: Pairwise coefficient matrix Cf .

1: Initialization: Apply m augmentation strategies to obtain X̃ ∈ Rd×nm, C̄ = 0, µ = λ
maxi̸=j |xT

j xi|
,

2: for each sample X(:, j) in X do
3: Set Dj = Nk(X(:, j)) as the dictionary, Ψj as the indices of Nk(X(:, j)) with Ψj ∩ {j + (k − 1)n}m+1

k=1 = ∅.
4: C̄(:, j)←

(
µD⊤

j Dj + Ik
)−1 (

µD⊤
j X(:, j)

)
where Ik is the identity matrix of dimension k.

5: Set C̃(Ψj , j) = C̄(:, j)
6: end for
7: Set Cf as block-wise sum of submatrices in C̃.

Algorithm 3 ADMM for optimizing Ak-LRR by setting R(C) = ∥C∥∗
Input: X ∈ Rd×n, m predefined augmentation strategies, parameters λ and k.
Output: Pairwise coefficient matrix Cf .

1: Initialization: Apply m augmentation strategies to obtain X̃ ∈ Rd×nm, C̃ = A = ∆ = 0, µ = λ
maxi̸=j |xT

j xi|
,

ρ = λ
2: while some convergence criterion is not met do
3: for each sample X(:, j) in X do
4: Set Dj = Nk(X(:, j)) as the dictionary, Ψj as the indices of Nk(X(:, j)) with Ψj∩{j+(k−1)n}m+1

k=1 = ∅.
5: A(Ψj , j)←

(
µD⊤

j Dj + ρIk
)−1

(
µD⊤

j X(:, j) + ρC̃(Ψj , j)−∆(Ψj , j)
)
where Ik is the identity matrix of

dimension k.
6: end for
7: C̃ ← SV T (A+∆/ρ) where SV T is the singular value thresholding operator.
8: ∆ = ∆+ ρ(A− C̄)
9: end while

10: Set Cf as block-wise sum of submatrices in C̃.

A.3. Optimizing the semi-supervised AkS-SC algorithms

In this section, we consider the problem of semi-supervised AkS-SC. Similar to AS-SSC algorithm (in Ap-
pendix A), optimizing these algorithms is carried out using an iteratice two-block coordinate decent. In each20

iteration, we update the estimated label matrix F and coefficient matrix C individually. Optimizing the matrix
F is identical to AS-SSC and the main difference lies in the optimization of the coefficient matrix C. Hence, in
this section, we provide the details for updating the coefficient matrix C for three scalable AkS-SC algorithms:
AkS-SSC, AkS-LSR and AkS-LRR.

A.3.1. Updating the coefficient matrix in AkS-SSC25

The AkS-SSC algorithm minimizes the following problem with respect to the coefficient matrix C:

min
C
∥C∥1 +

λ

2

n∑
j=1

∥X(:, j)−Nk

(
X(:, j)

)
C(Ψj , j)∥2F + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, : ∥22 |C(i, j)|

s.t. C(Φj , j) = 0, for j = 1, . . . , n. (3)

3



By introducing auxiliary variable A, this problem can be written as follows:

min
A,C

n∑
j=1

∥W̄ (:, j)⊙A(:, j)∥1 +

n∑
j=1

∥X(:, j)−Nk

(
X(:, j)

)
C(Ψj , j)∥22 +

ρ

2

n∑
j=1

∥C(:, j)−A(:, j)∥22

+

n∑
j=1

∆(:, j)⊤
(
C(:, j)−A(:, j)

)
,

s.t. A(Φj , j) = 0 for i = 1, . . . , n. (4)

where W̄ (i, j) = 1 + λ2||F (i, :)− F (j, :)||22. In fact, optimizing this problem involves minimizing n independent
subproblems with respect to each column of the matrix C. Let Dj = Nk

(
X(:, j)

)
, for j = 1, . . . , n, we apply the

iterative ADMM algorithm on each column of the matrices C, A and the Lagrangian multiplier ∆, separately.
In each iteration, the ADMM algorithm contains three main steps for updating the jth column of the matrices
C, A and ∆, for j = 1, . . . , n::30

1. Updating the j-th column of the coefficient matrix C by solving a scalable linear system of equations:(
λD⊤

j Dj + ρIk
)
C(Ψj , j) = λD⊤

j X(:, j) + ρA(:, j)−∆(:, j),

2. Updating the j-th column of the auxiliary matrix A while keeping other variables fixed:

min
A

n∑
j=1

∥W̄ (:, j)⊙A(:, j)∥1 +
ρ

2
∥A(:, j)−

(
C(:, j) +

∆(:, j)

ρ

)
∥22,

s.t. A(Φj , j) = 0.

This problem is minimized by the using soft-thresholding operator on each column:

J(:, j) = T
(
C(:, j) +

∆(:, j)

ρ
,
W̄ (:, j)

ρ

)
,

A(i, j) =

{
J(i, j), i /∈ Φj

0, i ∈ Φj
for i = 1, . . . , ñ and j = 1, . . . , n.

3. Updating the j-th column of the Lagrangian multiplier as: ∆(:, j) = ∆(:, j) + ρ
(
C(:, j)−A(:, j)

)
A.3.2. Updating the coefficient matrix in AkS-LSR

The optimization problem for AkS-LSR is as follows:

min
C
∥C∥2F +

λ

2

n∑
j=1

∥X(:, j)−Nk

(
X(:, j)

)
C(Ψj , j)∥2F + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |C(i, j)|

s.t. C(Φj , j) = 0, for j = 1, . . . , n. (5)

4



Minimizing AkS-LSR with R(C) = ∥C∥2F using ADMM is very similar to AkS-SSC, with few minor differences.
The corresponding augmented Lagrangian function is defined as:

min
A,C

n∑
j=1

∥C(:, j)∥22 +
λ

2

n∑
j=1

∥X(:, j)−Nk

(
X(:, j)

)
C(Ψj , j)∥22 +

n∑
j=1

∥W̄ (:, j)⊙A(:, j)∥1

+
ρ

2

n∑
j=1

∥C(:, j)−A(:, j)∥22 +

n∑
j=1

∆(:, j)⊤
(
C(:, j)−A(:, j)

)
,

s.t. A(Φj , j) = 0 for i = 1, . . . , n. (6)

We minimize this problem for each columns of the matrices C, A and ∆ separately. The iterative process
contains three main steps:

1. Updating the j-th column of the matrix C:(
λD⊤

j Dj + (2 + ρ)Ik
)
C(Ψj , j) = λD⊤

j X(:, j) + ρA(:, j)−∆(:, j) for j = 1, . . . , n (7)

2. Updating the j-th column of the matrix A:

min
A

n∑
j=1

∥W̄ (:, j)⊙A(:, j)∥1 +
ρ

2
∥A(:, j)− (C(:, j) +

∆(:, j)

ρ
)∥22,

s.t. A(Φj , j) = 0,

where W̄ (i, j) = λ2||F (i, :) − F (j, :)||22. This problem is minimized by applying the soft-thresholding
operator on each column:

J(:, j) = T
(
C(:, j) +

∆(:, j)

ρ
,
W̄ (:, j)

ρ

)
A(i, j) =

{
J(i, j), i /∈ Φj

0, i ∈ Φj
for i = 1, . . . , ñ & j = 1, . . . , n.

3. Updating the j-th column of the Lagrangian multiplier as: ∆(:, j) = ∆(:, j) + ρ
(
C(:, j)−A(:, j)

)
35

A.3.3. Updating the coefficient matrix in AkS-LRR

Updating the coefficient matrix in AkS-LRR using ADMM is slightly different from the two previous op-
timization problems in AkS-SSC and AkS-LSR. We introduce two auxiliary matrices A,Z ∈ Rñ×n and two
Lagrangian multipliers ∆1,∆2 ∈ Rñ×n and rewrite the problem as follows:

min
C,A,Z

∥C∥∗ +
λ

2

n∑
j=1

∥X(:, j)−Nk

(
X(:, j)

)
Z(Ψj , j)∥22 + λ2

ñ∑
i=1

n∑
j=1

∥F (i, :)− F (j, :)∥22 |A(i, j)|

+
ρ

2

(
∥C − Z∥2F + ∥A− Z∥2F

)
+ tr (∆⊤

1 (C − Z)) + tr (∆⊤
2 (A− Z)),

s.t. A(Φj , j) = 0 for i = 1, . . . , n. (8)

Minimizing this problem using ADMM involves four main steps for updating the matrices C,A,Z and the two
Lagrangian multipliers ∆1 and ∆2 in each iteration:
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1. minimizing with respect to the matrix C while keeping other variables fixed:

min
C
∥C∥∗ +

ρ

2
∥C − Z∥22 + tr

(
∆⊤

1 (C − Z)
)
,

This problem has a closed-form solution using singular value thresholding operator (SVT): C = SV T (Z −∆1/ρ).40

2. Updating with respect to the matrix Z by optimizing the following differentiable problem:

min
Z

λ

2

n∑
j=1

∥X(:, j)−Nk (X(:, j))Z(Ψj , j)∥22 +
ρ

2

n∑
j=1

(
∥C(:, j)− Z(; , j)∥22 + ∥A(:, j)− Z(:, j)∥22

)
+

n∑
j=1

∆1(:, j)
⊤ (C(:, j)− Z(:, j)) +

n∑
j=1

∆⊤
2 (A(:, j)− Z(:, j)) for j = 1, . . . , n.

By setting the derivative to zero, we have the following linear system of equations for updating each
column of the matrix Z: for j = 1, 2, . . . , n,(

λD⊤
j Dj + 2ρIk

)
Z(Ψj , j) = λD⊤

j X(:, j) + ρC(Ψj , j) + ρA(Ψj , j) + ∆1(Ψj , j) + ∆2(Ψj , j).

3. Updating with respect to the matrix A reduces to the following problem:

min
A
∥W̄ ⊙A∥1 +

ρ

2
∥A− Z∥2F + tr∆⊤

2 (A− Z),

s.t. A(Φj , j) = 0 for j = 1, . . . , n.

where W̄ (i, j) = λ2||F (i, :)−F (j, :)||22. This problem is minimized by the using soft-thresholding operator:

J = T
(
Z − ∆2

ρ
,
W̄

ρ

)
,

A(i, j) =

{
J(i, j), i /∈ Φj

0, i ∈ Φj
for i = 1, . . . , ñ and j = 1, . . . , n.

4. Updating the Lagrangian multipliers:

∆1 = ∆1 + ρ
(
C − Z

)
,

∆2 = ∆2 + ρ
(
A− Z

)
.

A.4. Additional numerical results

In this section, we provide additional numerical results for the proposed Ak-SC algorithms.

A.4.1. Sensitivity analysis for the synthetic dataset

The parameter λ2 controls the coupling between C and F and hence the influence of label propagation in
AS-SSC. As λ2 increases, the algorithm eliminates the links between samples with different estimated labels in45

fewer iterations, and hence the algorithm converges faster. However, the initial constructed graph might contain
a considerable number of wrong connections (see e.g., Figure 4(a)) and too fast propagation of labels over this
noisy graph can lead to suboptimal clusterings. Let us investigate the influence of λ2 on the error rate and
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elimination of the wrong paths between the labeled samples, which is the primary goal of the proposed iterative
approach.50

We set the number of augmented samples to either 50 or 100. We consider two cases, θ = {10, 15}◦. The

average of error rate and
∑5

i=1 ∥W ⊙ Aj∥ over 100 trials are shown in Figure A.2. The matrix W encodes the

cannot-links between labeled samples from different clusters and
∑5

i=1 ∥W ⊙Aj∥ quantifies the strength of the
paths with length at most equal to five between the labeled samples from different clusters (see Remark 2).
Ideally, this quantity should be equal to zero for well-separated samples from different clusters.55

We observe that:

• Generally, as λ2 increases, the number of paths between labeled samples of different clusters decreases.
However, this does necessarily lead to lower error rates, as this does not put any restrictions on the
unlabeled samples.

• More augmented samples provide more information on each subspace (increasing the inradius), increasing60

the number of subspace preserving connections from the initial iterations, and hence leading to more
robust label propagation.

• All in all, for the synthetic data set, AS-SSC is not very sensitive to the value of λ2 and the error rate are
similar for a large range of λ2, namely λ2 ∈ [1, 10].

A.4.2. Sensitivity to k and to augmentation strategies of Ak-SC algorithms on the COIL-20 dataset65

Table A.1 provides the performance of Ak-SC algorithms with respect to different values of k, namely
k = {10, 30, 50}, and different sets of augmentation strategies, namely {no augmentation,flip, rotation, scale}.

All augmentation strategies lead to an improvement in the performance, for all values of k. Ak-SSC performs
better than Ak-LRR and Ak-LSR as the value of k increases. This is due to the fact that Ak-SSC enforces
sparsity, independently of the value of k.70

A.4.3. Example when Ak-SSC improves the quality of the coefficient matrix in the COIL-20 dataset

We now provide an example on how Ak-SSC affects the coefficient vector for a given sample from COIL-20.
The given sample is an image of a toy car and we calculate the corresponding coefficient vector using both
kNN-SSC (without augmentation) and Ak-SSC (with the aforementioned augmentation strategies). Figure A.3
illustrates this experiment, showing the top four images corresponding to the highest absolute values in the75

coefficient vectors. We observe that kNN-SSC has a strong wrong connection with a “visually similar” sample
from a different cluster. However, the entry corresponding to this sample has significantly dropped, from 0.208
to 0.02 in Ak-SSC. Hence, augmentation has resulted in strengthening the connectivity between the samples
from the same subspaces and weakening the connectivity between the samples from different subspaces. This
is due to the increase in the inradius of subspaces which is helpful in clustering close subspaces.80

A.4.4. Effect of k on the performance of Ak-SC for the MNIST dataset

Table A.2 provides the performance of Ak-SC algorithms and the corresponding kNN-based algorithms for
different values of k. We observe that augmented algorithms perform similarly for different values of k, and all of
them improve the corresponding kNN-based algorithms by a large margin. This confirms that the improvement
in the performance of Ak-SC algorithms is due to the augmentation and is not sensitive to the value of k.85
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Figure A.2: The impact of the value of λ2 ∈ {0, 0.1, 0.5, 1, 5, 10} on error rate and the elimination of paths between labeled samples
from different clusters.
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Table A.1: Evaluation of A-SC on the COIL-20 data set with respect to different parameters.

k Augmentation strategy Evaluation Ak-SSC Ak-LRR Ak-LSR

10

none
err 17.84 15.28 19.72
NMI 91.43 91.85 90.42

{flip} err 16.50 14.62 16.68
NMI 93.49 92.62 93.96

{rotation, scale} err 0.01±0.04 0±0 0±0
NMI 99.97±0.06 100±0 100±0

{flip, rotation, scale} err 0.01±0.04 0±0 0.02±0.06
NMI 99.97±0.06 100±0 99.97±0.09

30

none
err 22.15 25.28 28.13
NMI 91.67 86.06 84.00

{flip} err 16.32 17.43 17.15
NMI 94.31 90.07 90.37

{rotation, scale} err 5.19±3.58 12.93±2.85 12.74±4.57
NMI 98.77±0.84 95.70±0.72 95.92±0.95

{flip, rotation, scale} err 1.56±3.33 7.15±2.12 6.07±3.22
NMI 99.58±0.72 97.81±0.33 97.70±0.53

50

none
err 20.21 24.93 27.08
NMI 91.89 85.45 83.05

{flip} err 16.32 18.82 18.54
NMI 94.25 88.99 88.42

{rotation, scale} err 10.12±3.46 15.55±0.10 18.43±0.29
NMI 97.41±1.08 94.99±0.10 93.69±0.32

{flip, rotation, scale} err 7.47±0.03 15.13±0.13 17.45±2.70
NMI 98.25±0.00 94.94±0.03 94.21±0.39

Table A.2: Comparing kNN-based and augmented based SC algorithms on the MNIST data set with respect to different values for
k for all the 10 digits.

Evaluation kNN-SSC kNN-LRR kNN-LSR Ak-SSC Ak-LRR Ak-LSR

k=10
err 24.60 25.60 30.60 10.00±3.44 9.76±3.34 10.00±3.43
NMI 75.73 74.42 72.42 85.27±1.17 85.57±1.04 85.01±0.99

k=50
err 16.40 22.40 18.80 9.32±4.30 10.20±3.96 10.18±3.83
NMI 76.77 68.28 71.82 85.15±2.06 84.08±1.77 83.87±1.27

k=100
err 16.80 28.20 28.80 9.20±0.63 10.63±0.76 10.68±0.83
NMI 78.31 64.18 61.89 85.19±0.77 82.44±0.78 82.30±0.86
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given sample 0.377 x 0.233 x 0.208 x 0.151 x

(a) The top four images utilized for reconstruction using kNN-SSC.

given sample 0.507 x 0.285 x 0.173 x 0.0278 x

(b) The top four images utilized for reconstruction using Ak-SSC.

Figure A.3: Comparing the effect of augmentation on the coefficient matrix between kNN-SSC and Ak-SSC for a specific sample
from the COIL-20 data set. The top four images used to reconstruct this sample and their corresponding coefficient values for
kNN-SSC and Ak-SSC are illustrated in (a) and (b), respectively.
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